Smooth geometric evolutions of hypersurfaces
نویسندگان
چکیده
منابع مشابه
Smooth Geometric Evolutions of Hypersurfaces
We consider the gradient flow associated to the following functionals Fm(φ) = ∫ M 1 + |∇ν| dμ . The functionals are defined on hypersurfaces immersed in R via a map φ : M → R, where M is a smooth closed and connected n–dimensional manifold without boundary. Here μ and ∇ are respectively the canonical measure and the Levi–Civita connection on the Riemannian manifold (M, g), where the metric g is...
متن کاملStar points on smooth hypersurfaces
— A point P on a smooth hypersurface X of degree d in PN is called a star point if and only if the intersection of X with the embedded tangent space TP (X) is a cone with vertex P . This notion is a generalization of total inflection points on plane curves and Eckardt points on smooth cubic surfaces in P3. We generalize results on the configuration space of total inflection points on plane curv...
متن کاملAleksandrov Reeection and Geometric Evolution of Hypersurfaces
Consider a compact embedded hypersurface ? t in R n+1 which moves with speed determined at each point by a function F (1 ; : : : ; n ; t) of its principal curvatures, for 0 t < T: We assume the problem is degenerate parabolic, that is, that F (; t) is nondecreasing in each of the principal curvatures 1 ; : : : ; n : We shall show that for t > 0 the hypersurface ? t sat-isses local a priori Lips...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometric And Functional Analysis
سال: 2002
ISSN: 1016-443X,1420-8970
DOI: 10.1007/s00039-002-8241-0